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a b s t r a c t

Arbitrary non-uniform elastic edge restraints represent the most general class of

boundary conditions for plate problems, and are encountered in many real-world

applications. The vibrations of plates with this kind of boundary conditions, however,

are rarely studied in the literature perhaps because there is a lack of suitable analytical

or numerical techniques. In this investigation, a general analytical method is derived for

the vibration analysis of rectangular plates with elastic edge restraints of varying

stiffness. Both rotational and translational restraints can be arbitrarily applied to an

edge, and their stiffness distributions are generally described in terms of a set of

invariants, cosine functions. The displacement solution is sought simply as a linear

combination of several one- and two-dimensional Fourier cosine series expansions. All

the unknown Fourier coefficients are treated equally as a set of independent generalized

coordinates and solved directly from the Rayleigh–Ritz formulation. Unlike the existing

techniques, the current method does not require any special procedures or schemes to

deal with different boundary conditions. A few ‘‘classical’’ problems involving non-

uniform rotational restraints are first solved and used to check the current solution

against some of the existing techniques. The modal results are also presented for plates

with more complicated boundary conditions in which an edge is no longer completely

restrained in the translational direction. The accuracy and reliability of the current

method are repeatedly demonstrated through all these examples.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

There is a wealth of literature about the vibrations of rectangular plates with various boundary conditions, but a vast
majority of them is focused on the classical boundary conditions representing various combinations of clamped, simply
supported or free edges [1]. While a number of studies have been devoted to the vibrations of plates with uniform elastic
restraints along an edge [2–13], few references can be found to deal with non-uniform elastic restraints [14–17]. Many
different techniques have been developed for solving the plate problems, which include, but are not limited to,
Rayleigh–Ritz procedures, finite strip method [18], superposition method [19], Differential quadrature method (DQ)
[15,16,20], and discrete singular convolution method (DSC) [21]. The DQ method was proposed by Bellman [22,23] in the
early 1970s. The basic idea in the DQ method is to approximate the derivative of a function as a weighted linear
combination of the function values at a number of discrete locations. Thus, any partial differential equation can be reduced
to a system of linear algebraic equations. The DQ method has been successfully applied to plate problems by Bert et al. [24]
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Nomenclature

a plate dimension in x direction
Amn double Fourier series coefficients
b plate dimension in y direction
cj

m single Fourier series coefficients
dj

n single Fourier series coefficients
D flexural rigidity (¼ Eh3=ð12ð1� v2ÞÞ)
E Young’s modulus
h plate thickness
j index in the special functions and single

Fourier series (¼ 1;2;3;4)
kx0; kxa translational stiffnesses function at, respec-

tively, x ¼ 0 and a

ky0; kyb translational stiffnesses function at, respec-
tively, y ¼ 0 and b

K stiffness matrix
Kx0;Kxa rotational stiffnesses function at, respectively,

x ¼ 0 and a

Ky0;Kyb rotational stiffnesses function at, respectively,
y ¼ 0 and b

m Fourier series index in x-direction
(¼ 0;1 . . .M � 1)

M Fourier series truncation number in x-direction
M mass matrix
Mx;My bending moment
Mxy twisting moment
n Fourier series index in y-direction

(¼ 0;1 . . .N � 1)
N Fourier series truncation number in y-direction
Qx;Qy shear forces
r aspect ratio (¼ a=b)
wðx; yÞ flexural displacement
dmn Kronecher delta function
lam mp=a

lbn np=b

v Poisson’s ratio
r mass density
o angular frequency
O dimensionless frequency parameter

(¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
)
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and Laura and Gutierrez [15]. Despite its certain level of success in solving various physical and engineering problems, the
wide applications of this method have been hampered by the uncertainties or controversy with selecting the base
functions, grid points and weighting coefficients. Delta-grids are commonly used in approximating the second-order
derivatives as included in the boundary conditions of a plate problem. However, such grids can potentially lead to an ill-
conditioned weighting coefficient matrix [16]. DSC method was recently developed by Wei [25]. The regularized Shannon’s
delta kernel is used, and the differentiation is carried out ‘‘analytically’’ on certain discrete points. This method has been
applied to the vibrations of plates with mixed and non-uniform edge restraints [17,21]. Although the DSC method has been
shown to be highly accurate for simply supported plates with/without rotational restraints, it will lose its high order
accuracy at an edge which is not completely restrained in the transverse direction. For instance, a difficulty of
accommodating free edges has been considered a pressing issue in the DSC analysis of structures [26]. To overcome this
problem, an iteratively matched boundary scheme based on one-sided finite difference was proposed to generate function
values at enough fictitious points for the DSC analysis of beams with a free edge [26]. It is not clear whether the mixed use
of the finite difference and DSC algorithms will ultimately affect the accuracy of the solution when extended to plates with
a transversely-movable edge. Superposition method was proposed by Gorman in solving plate problems under various
boundary conditions [19,27–29]. In the superposition method, a general boundary condition is decomposed into a number
of simple boundary conditions for which analytical solutions exist or can be easily derived. In using this technique,
however, one needs to have a good understanding of the original problems, and customize the solution procedures
accordingly to best fit each kind of boundary conditions, which may not be an easy task in view of the variety of possible
boundary conditions encountered in practice.

It is commonly believed an exact solution is available only for plates which are simply supported along, at least, one pair
of opposite edges, and one has to resort to an approximate solution for other boundary conditions. Rayleigh–Ritz technique
is most widely used in finding an approximate solution. For plate problems, the admissible functions used in the
Rayleigh–Ritz procedure are often expressed in terms of the beam functions obtained under similar boundary conditions
[30–34]. Consequently, a specific set of beam functions is required for each type of boundary conditions. Regardless of other
possible issues and concerns, the use of beam functions clearly becomes problematic when the boundary condition or
restraint is not uniform along an edge.

Instead of the beam functions, one may also use other forms of admissible functions such as simple or orthogonal
polynomials, trigonometric functions and their combinations [12,13,35–42]. When the admissible functions do not form a
complete set, the accuracy and convergence of the resulting solution cannot be easily estimated. A well-known problem
with use of complete (orthogonal) polynomials is that the higher order polynomials tend to become numerically unstable
due to the computer round-off errors. This numerical difficulty can be avoided by using the trigonometric functions or the
combinations of trigonometric functions and lower order polynomials. Although it has become a ‘‘standard’’ practice to
express the plate displacement function as the series expansion of the beam functions (whether they are in the form of
trigonometric functions, hyperbolic functions, polynomials or their combinations), there is no guarantee mathematically
that such a representation will actually converge to the true solution because of the difference between the beam and plate
boundary conditions. While the limitation of such a mathematical treatment is not readily assessed, its practical
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implication becomes immediately clear when a non-uniform boundary condition is specified along an edge. More
explicitly, a similar boundary condition cannot be readily chosen for the purpose of determining the appropriate

beam functions.
Hurlebaus et al. [43] proposed a Fourier cosine series solution for calculating the eigenfrequencies and mode shapes for

a (composite) plate with completely free edges. The exactness of this solution was questioned by Rosales and Filipich [44]. In
particular, they insisted that when the uniform convergence of the essential functions (which include the slopes in the
plate problem) could not be ensured, there was the probability that the eigenvalue would converge to an approximate
value, or even more serious, jump to other eigenvalue (i.e., the loss of eigenvalues). In an earlier paper [45], they developed
a variational method, the so-called whole element method (WEM), to calculate the natural frequencies of a free rectangular
plate. The displacement solution was expressed in the form of sine series plus a few complementary terms, and the solution
was obtained as an extremizing sequence corresponding to the stationarity condition for a functional defined over the
domain of the plate. Probably because of the free boundary condition along each edge, the functional they used did not
contain any boundary variable or involve any boundary integral. It is a question whether the series solutions derived in
Refs. [43,45] can be extended to other boundary conditions than the completely free case.

Recently, an exact Fourier series method was proposed for the in-plane [46] and out-of-plane [47] vibration analysis of
plates with uniform elastic restraints along edges. In this method, the Fourier series solution is constructed in such a way
that it can be directly differentiated, term-by-term, to derive the uniformly convergent series expansions for all the
interested derivatives or variables. Therefore, a solution in strong form can be obtained by letting the series simultaneously
satisfy both the governing differential equation and the boundary conditions exactly on a point-wise basis. In this
investigation, the Fourier series solution is extended to plates with non-uniform elastic edge restraints. The stiffness for
each of the elastic restraints is allowed to vary arbitrarily along an edge. Instead of seeking a solution in strong form as in
the previous studies, all the Fourier coefficients will be treated equally and independently as the generalized coordinates
and solved directly from the Rayleigh–Ritz technique. Although the size of the final system is increased, the solution
procedures are simplified significantly.

2. Vibration of a rectangular plate

The governing differential equation for the free vibration of a plate is given by

Dr4wðx; yÞ � rho2wðx; yÞ ¼ 0 (1)

where r4
¼ q4=qx4 þ 2q4=qx2qy2 þ q4=qy4, wðx; yÞ is the flexural displacement, o is angular frequency, and D, r and h are,

respectively, the flexural rigidity, the mass density and the thickness of the plate .
In terms of the flexural displacement, the bending and twisting moments, and the transverse shearing forces can be

expressed as

Mx ¼ �D
q2w

qx2
þ v

q2w

qy2

 !
, (2)

My ¼ �D
q2w

qy2
þ v

q2w

qx2

 !
, (3)

Mxy ¼ �Dð1� nÞ q
2w

qxqy
, (4)

Qx ¼ �D
q
qx
ðr2wÞ þ

qMxy

qy
¼ �D

q3w

qx3
þ ð2� nÞ q

3w

qxqy2

 !
, (5)

and

Qy ¼ �D
q
qy
ðr2wÞ þ

qMxy

qx
¼ �D

q3w

qy3
þ ð2� nÞ q

3w

qx2qy

 !
. (6)

The boundary conditions for an elastically restrained rectangular plate are as follows:

kx0ðyÞw ¼ Qx; Kx0ðyÞqw=qx ¼ �Mx; at x ¼ 0 (7, 8)

kxaðyÞw ¼ �Qx; KxaðyÞqw=qx ¼ Mx; at x ¼ a (9, 10)

ky0ðxÞw ¼ Qy; Ky0ðxÞqw=qy ¼ �My; at y ¼ 0 (11,12)

and

kybðxÞw ¼ �Qy; KybðxÞqw=qy ¼ My; at y ¼ b (13,14)
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where kx0ðyÞ and kxaðyÞ (ky0ðxÞ and kybðxÞ) are the stiffness functions for the translational elastic restraints, and
Kx0ðyÞ and KxaðyÞ (Ky0ðxÞ and KybðxÞ) are the stiffness functions for the rotational restraints at x ¼ 0 and x ¼ a (y ¼ 0 and
y ¼ b), respectively. It should be noted that the stiffness functions can be arbitrarily specified along any edge. Eqs. (7)–(14)
represent a set of general boundary conditions for a plate, and all the familiar classical homogenous boundary conditions
can be considered as the special cases when the stiffness functions are uniformly specified as zero or infinity along
each edge.

As in the previous study [47], the displacement solution will be sought as a series expansion in the form of

wðx; yÞ ¼
X1
m¼0

X1
n¼0

Amn cos lamx cos lbnyþ
X4

j¼1

xj
b
ðyÞ
X1
m¼0

cj
m cos lamxþ xj

aðxÞ
X1
n¼0

dj
n cos lbny

 !
(15)

where lam ¼ mp=a, lbn ¼ np=b, and xj
aðxÞ (or xj

b
ðyÞ) represent a set of closed-form supplementary functions, for example,

defined as

x1
aðxÞ ¼

9a

4p sin
px

2a

� �
�

a

12p sin
3px

2a

� �
; x2

aðxÞ ¼ �
9a

4p cos
px

2a

� �
�

a

12p cos
3px

2a

� �
, (16,17)

x3
a ðxÞ ¼

a3

p3
sin

px

2a

� �
�

a3

3p3
sin

3px

2a

� �
; x4

a ðxÞ ¼ �
a3

p3
cos

px

2a

� �
�

a3

3p3
cos

3px

2a

� �
. (18,19)

It is easy to verify that x01a ð0Þ ¼ x02a ðaÞ ¼ x0003a ð0Þ ¼ x0004a ðaÞ ¼ 1, and all the other first and third derivatives are identically
equal to zero along the edges. By choosing the supplementary functions in such a way, each of the 1-D Fourier series
expansions in Eq. (15) will now have a simple explanation; that is, it represents either the first or the third derivative of the
displacement function along one of the edges. As a result, the 2-D series simply represent a residual displacement field
which is periodic and adequately smooth over the entire x–y domain. More importantly, it is now guaranteed to uniformly
converge at a substantially improved speed for any boundary condition [47,48].

In Ref. [47], the series solution is sought in strong form by simultaneously satisfying both the governing differential
equation and the boundary conditions exactly on a point-wise basis. Because the series expansions will have to be
truncated in numerical calculations, the exactness of the solution should be understood as a solution with arbitrary

precision. A similar solution can also be obtained for the current plate problems involving arbitrary non-uniform edge
supports. In this study, however, the solution will be sought in weak form using the Rayleigh–Ritz procedure. Accordingly,
all the Fourier coefficients will be considered as mutually independent generalized coordinates, and solved directly from,
for instance, the Hamilton’s equation

d
Z t1

t0

ðT � VÞdt ¼ 0 (20)

where T is the total kinetic energy and V is the total potential energy.
For a purely bending plate, the total potential energy can be expressed as

V ¼
D

2

Z a

0

Z b

0
½ðq2w=qx2Þ2 þ ðq2w=qy2Þ2 þ 2nq2w=qx2@2w=qy2 þ 2ð1� nÞðq2w=qxqyÞ2�dx dy

þ
1

2

Z b

0
ðkx0w2 þ Kx0ðqw=qxÞ2Þx¼0 dyþ 1=2

Z b

0
ðkxaw2 þ Kxaðqw=qxÞ2Þx¼a dy

þ
1

2

Z a

0
ðky0w2 þ Ky0ðqw=qyÞ2Þy¼0 dxþ 1=2

Z a

0
ðkyaw2 þ Kyaðqw=qyÞ2Þy¼b dx (21)

and the total kinetic energy is calculated from

T ¼
1

2

Z a

0

Z b

0
rhðqw=qtÞ2 dx dy. (22)

In Eq. (21), the first integral represents the strain energy due to the bending of the plate, and the remaining integrals
represent the potential energies resulting from the deflections of the elastic constraints.

In order to derive the final system against all the unknown Fourier coefficients, one has to substitute the displacement
expression, Eq. (15), into the Hamilton’s equation, Eq. (20), and calculate partial derivatives with respect to each of
Fourier coefficients. For example, the first term of the bending energy term, after differentiated with respect to Amn, can be
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written as

q
qAmn

D

2

Z a

0

Z b

0
ðq2w=qx2Þ2 dx dy

" #

¼
D

2

Z a

0

Z b

0

q
qAmn

ðq2w=qx2Þ2 dx dy ¼
D

2

Z a

0

Z b

0
2q2w=qx2ð�l2

amÞ cos lamx cos lbny dx dy

¼ l2
amD

Z a

0

Z b

0

X1
m0¼0

X1
n0¼0

l2
am0Am0n0 cos lam0x slbn0y cos lamx cos lbny dx dy

þ l2
amD

Z a

0

Z b

0

X4

j¼1

xj
b
ðyÞ

X1
m0¼0

ðl2
am0c

j
m0 cos lam0xÞ cos lamx cos lbny dx dy

� l2
amD

Z a

0

Z b

0

X4

j¼1

x00ja ðxÞ
X1
n0¼0

ðdj
n0 cos lbn0yÞ cos lamx cos lbny dx dy

¼ D l4
am Amn þ

X4

j¼1

~b
j
ncj

m

0
@

1
A� l2

am

X4

j¼1

~̄̄a
j

mdj
n

2
4

3
5DmDn (23)

where Dm ¼
R a

0 ðcos lamxÞ2 dx ¼ ð1þ dm0Þa=2, Dn ¼
R b

0 ðcos lbnyÞ2 dy ¼ ð1þ dn0Þb=2, ~b
j
n ¼ 1=Dn

R b
0 xj

b
ðyÞ cos lbny dy, and

~̄̄a
j

m ¼ 1=Dm
R a

0 x00ja ðxÞ cos lamx dx. The detailed calculations are given in Appendix A.

As mentioned earlier, in this study the stiffness for each elastic restraint can be arbitrarily specified along an edge.
To unify the calculations, every stiffness function, such as kx0(y), will be expanded into Fourier series as

kx0ðyÞ ¼
X1
l¼0

~kx0;l cos
lp
b

y

� �
(24)

For any given continuous stiffness function, the series expansion in Eq. (24) will converge at a rate of, at least, (lp)2.
Accordingly, the contribution from this boundary restraint can be calculated as

q
qAmn

1

2

Z b

0
kx0ðyÞw

20; ð0; yÞdy

" #

¼
1

2

Z b

0
kx0ðyÞ

q
qAmn

½w2ð0; yÞ�dy ¼

Z b

0
kx0ðyÞwð0; yÞ cosðlbnyÞdy

¼

Z b

0
kx0ðyÞ

X1
m0¼0

X1
n0¼0

Am0n0 cos lbn0yþ
X4

j¼1

xj
b
ðyÞ

X1
m0¼0

cj
m0 þ xj

að0Þ
X1
n0¼0

dj
n0 cos lbn0y

" #8<
:

9=
; cos lbny dy

¼
1

2

X1
m0¼0

X1
n0¼0

Am0n0

Z b

0
kx0ðyÞðcos lbðnþn0Þyþ cos lbðn�n0ÞyÞdy

þ
1

2

X4

j¼1

X1
n0¼0

xj
að0Þd

j
n0

Z b

0
kx0ðyÞðcos lbðnþn0Þyþ cos lbðn�n0ÞÞdy

þ
X4

j¼1

Z b

0
xj

b
ðyÞkx0ðyÞ cos lbny dy

X1
m0¼0

cj
m0

¼
1

2

X1
m0¼0

X1
n0¼0

ð~kx0;nþn0 þ
~kx0;jn�n0 jÞAm0n0

þ
1

2

X4

j¼1

X1
l¼0

kx0;lð
~b

j
nþl þ

~b
j
jn�ljÞ

X1
m0¼0

cj
m0 þ

X1
n0¼0

xj
að0Þð

~kx0;nþn0 þ
~kx0;jn�n0jÞd

j
n0

" #
(25)

When a (number of) discrete restraint(s) is applied along an edge, the corresponding stress function can be expressed in
terms of delta function(s). Consequently, the series representation as in Eq. (24) may not be preferred because of the
possible convergence problem at the discontinuity location(s). In such a case, however, the integrals in Eq. (25) can be
readily calculated by making use of the characteristic of a delta function.
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By accounting for all the other terms in Eqs. (21) and (22), a set of linear algebraic equations (resulting from the
derivatives with respect to Amn) can be derived as

D½l4
am þ l4

bn þ 2l2
aml2

bn�DmDnAmn

þ
1

2

X1
n0¼0

X1
m0¼0

ð~kx0;nþn0 þ
~kx0; n�n0j j þ ð�1Þm

0þmð~kxa;nþn0 þ
~kxa;jn�n0 jÞÞAm0n0

þ
1

2

X1
m0¼0

X1
n0¼0

ð~ky0;mþm0 þ
~ky0;jm�m0j þ ð�1Þn

0þnð~kyb;mþm0 þ
~kyb;jm�m0jÞÞAm0n0

þ
X4

j¼1

D½ðl4
am þ vl2

aml2
bnÞb

j
n � ðl

2
bn þ vl2

amÞ
¯̄b

j

n � 2ð1� vÞlbnl
2
amb̄j

n�DmDncj
m

þ
1

2

X4

j¼1

X1
l¼0

X1
m0¼0

ðkx0;l þ kxa;lð�1Þmþm0 Þð ~b
j
nþl þ

~b
j
jn�ljÞc

j
m0

þ
1

2

X4

j¼1

X1
m0¼0

½xj
b
ð0Þð~ky0;mþm0 þ

~ky0;jm�m0jÞ þ xj
b
ðbÞð�1Þnð~kyb;mþm0 þ

~kyb;jm�m0jÞ�c
j
m0

þ
X4

j¼1

D½ðl4
bn þ vl2

bnl
2
amÞa

j
m � ðl

2
am þ vl2

bnÞ ¯̄a
j
m � 2ð1� vÞlaml2

bnā
j
m�DmDndj

n

þ
1

2

X4

j¼1

X1
s¼0

X1
n0¼0

ðky0;s þ ð�1Þnþn0kyb;sÞð ~a
j
mþs þ ~aj

m�sj j
Þdj

n0

þ
1

2

X4

j¼1

X1
n0¼0

½xj
að0Þð

~kx0;nþn0 þ
~kx0;jn�n0jÞ þ ð�1Þmxj

aðaÞð
~kxa;nþn0 þ

~kxa;jn�n0 jÞ�d
j
n0

� rho2 Amn þ
X4

j¼1

bj
ncj

m þ
X4

j¼1

aj
mdj

n

2
4

3
5DmDn ¼ 0 (26)

where x00j
b
ðyÞ ¼

P1
n¼0

¯̄b
j

n cos lbny, and xj
aðxÞ ¼

P1
n¼0a

j
m cos lamx.

Taking partial derivative respect to ci
m (i ¼ 1, 2, 3, 4) results in

X1
n0¼0

D½ðl4
am þ vl2

aml2
bnÞb

i
n0 � ðl

2
bn0 þ vl2

amÞ
¯̄b

i

n0 � 2ð1� vÞl2
amlbn0 b̄

i
n�DmDn0Am;n0

þ
1

2

X1
l¼0

X1
n0¼0

X1
m0¼0

ðkx0;l þ kxa;lð�1Þm
0þmÞð ~b

i
n0þl þ

~b
i
jn0�ljÞAm0 ;n0

þ
1

2

X1
m0¼0

X1
n0¼0

ðxi
bð0Þð

~ky0;mþm0 þ
~ky0;jm�m0 jÞ þ xi

bðbÞð�1Þn
0

ð~kyb;mþm0 þ
~kyb;jm�m0 jÞÞAm0 ;n0

þ
X4

j¼1

D½l4
amb0;0

i;j
þ b2;2

i;j
� vl2

amðb
2;0
i;j
þ b0;2

i;j
Þ þ 2ð1� vÞl2

amb1;1
i;j
�Dmcj

m

þ
X4

j¼1

X1
l¼0

X1
m0¼0

ðkx0;l þ kxa;lð�1Þmþm0 Þb0;0
i;j;l

cj
m0

þ
1

2

X4

j¼1

X1
m0¼0

½xi
bð0Þx

j
b
ð0Þð ~ky0;mþm0 þ

~ky0;jm�m0 jÞ þ xi
bðbÞx

j
b
ðbÞð~kyb;mþm0 þ

~kyb;jm�m0 jÞ�c
j
m0

þ
1

2

X4

j¼1

X1
m0¼0

½x0ibð0Þx
0j
b
ð0Þð ~Ky0;mþm0 þ

~Ky0;jm�m0 jÞ þ x0ibðbÞx
0j
b
ðbÞð ~Kyb;mþm0 þ

~Kyb;jm�m0 jÞ�c
j
m0

þ
X4

j¼1
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Taking partial derivative respect to di
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Eqs. (26)–(28) can be combined together in more concise matrix form as

K�
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a ¼ 0 (29)
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T.
It has been assumed in Eq. (29) that all series expansions have been truncated to m ¼ 0,1,2,y,M and n ¼ 0,1,2,y,N for

the sake of numerical calculations.
In comparison with the strong form of solution as derived in Ref. [47], the number of equations in the final system is

increased by 4(M+N+2) since the Fourier coefficients in the 1-D series expansions are considered as independent variables.
However, the current solution process is significantly simplified because the restraint equations, in the form of boundary
conditions, between the boundary and field Fourier coefficients are no longer explicitly reinforced. However, this does
not necessarily imply a loss of the accuracy by the current solution. As a matter of fact, since the solution constructed in
Eq. (15) is as smooth as what a classical solution would be required (that is, to belong to C3 for 8(x, y)AD: [0, a]�[0, b]), the
weak and strong formulations can be proved mathematically to be equivalent to each other.

Eq. (29) represents a standard matrix characteristic equation from which all the eigenpairs can be easily determined.
Once the Fourier coefficient eigenvector a is determined for a given eigenvalue, the corresponding mode shape can be
constructed directly from the displacement expression, Eq. (15). Even though this study is focused on the free vibrations of
an elastically restrained plate, the forced vibration can be readily calculated by simply adding a load vector to the right side
of Eq. (29).

3. Results and discussions

Several examples involving plates with non-uniform elastic restraints will be given in this section. First, let us consider a
problem previously investigated by several researchers [14–17]. As shown in Fig. 1, it involves a simply supported plate
with rotational restraints of parabolically varying stiffness along two opposite edges (SESE). This is a special case of the
general boundary conditions, Eqs. (7)–(14), when the stiffness functions are set as: kx0ðyÞ ¼ kxaðyÞ ¼ ky0ðxÞ ¼ kybðxÞ ¼ 1
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and Kx0ðyÞ ¼ KxaðyÞ ¼ 0, and Ky0ðxÞ ¼ KybðxÞ ¼ Kcð1� xÞxD=a where Kc is a constant. Another ‘‘classical’’ case is referred to
as CECE where the two simply supported edges become fully clamped, namely, Kx0ðyÞ ¼ KxaðyÞ ¼ 1. The fundamental
frequencies calculated using various methods are shown in Table 1 for both cases. It is noted that the current results
compare well with those previously obtained from other different techniques. As mentioned earlier, the series expansion,
Eq. (29), will has to be truncated in numerical calculations. The CECE case with Kc ¼ 1 is used to examine the convergence
of the current solution. As shown in Table 2, the first six frequency parameters become quickly converged at M ¼ N ¼ 10 for
the given 5-digit precision. For simplicity, the displacement expansion will be truncated to M ¼ N ¼ 10 in all the
subsequent calculations. More results for other restraining schemes are shown in Table 3 together with those previously
obtained by Zhao and Wei [17] using the DSC method. A good agreement is observed between the two different methods.

Although non-uniform restraints against rotations are allowed in the above examples, the transverse displacement is
fully restrained along each edge. In many practical applications, however, both the translational and rotational restraints
may have to be considered as elastic and their stiffnesses can vary from point to point on an edge. While the restraining of
transverse displacement along each edge may be needed in the previous studies for whatever reasons, it is definitely not a
= ∞
= +

= ∞
=

= ∞
=

= ∞
= +

Fig. 1. A simply supported plate with rotational springs of parabolically varying stiffness along two opposite edges, where Kc is a constant.

Table 1

The fundamental frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for (a) SESE: Simply supported plate with rotational springs of parabolically varying stiffness

along two opposite edges (b) CECE: Setup (a) with two simply supported edges clamped.

l SESE CECE

Kc a b c d Current a b c d Current

0.5 0 12.337 12.34 12.337 12.337 12.349 23.814 23.82 23.816 23.816 23.816

0.1 12.341 12.34 12.341 12.340 12.354 23.844 23.82 23.818 23.819 23.818

1 12.372 12.38 12.379 12.362 12.391 23.876 23.85 23.839 23.843 23.839

10 12.621 12.66 12.666 12.550 12.674 24.136 24.01 23.996 24.019 23.996

100 13.319 13.37 13.364 13.207 13.366 24.561 24.41 24.393 24.410 24.393

106 13.688 13.7 13.686 13.686 13.686 24.566 24.60 24.578 24.579 24.578

1 0 19.739 19.74 19.734 19.739 19.748 28.951 28.96 28.951 28.952 28.951

0.1 19.757 19.76 19.761 19.764 19.770 28.969 28.98 28.966 28.970 28.966

1 19.915 19.95 19.951 19.985 19.960 28.219 29.12 29.102 29.128 29.103

10 21.235 21.49 21.487 21.701 21.493 32.179 30.24 30.222 30.383 30.222

100 25.799 26.13 26.147 26.356 26.149 35.379 33.82 33.796 33.960 33.795

106 28.951 28.98 28.951 28.951 28.950 35.992 36.01 35.985 35.987 35.985

Source: a, Ref. [14]; b, Ref. [15]; c, Ref. [16]; d, Ref. [17].

Table 2

Convergence study in terms of frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for the CECE square plate with Kc ¼ 1.

M ¼ N O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

n ¼ 6 29.107 55.087 69.393 94.797 102.70 129.21 140.67 155.21 170.94 201.11

n ¼ 7 29.103 55.069 69.389 94.796 102.62 129.13 140.58 154.94 170.83 200.15

n ¼ 8 29.103 55.067 69.384 94.755 102.62 129.13 140.49 154.92 170.79 200.15

n ¼ 9 29.103 55.064 69.383 94.755 102.60 129.12 140.47 154.88 170.77 200.01

n ¼ 10 29.103 55.064 69.382 94.748 102.60 129.12 140.46 154.88 170.76 200.01

n ¼ 11 29.103 55.064 69.382 94.748 102.60 129.12 140.45 154.87 170.76 199.98
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problem with the current method. When the displacement is not identically equal to zero along each edge, the frequency
parameter, O ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, will become dependent upon Poisson’s ratio. For the simplicity, Poisson’s ratio will be set as

v ¼ 0:3in the following calculations.
In the current method, the stiffness for each restraining spring can be specified as an arbitrary function of spatial

coordinates. Specifically, we will consider the restraining scheme depicted in Fig. 2 where the stiffness functions are
‘‘arbitrarily’’ selected as uniform, linear, parabolic and sinusoidal along the edges. As mentioned earlier, each of the stiffness
function will be generally represented by a Fourier cosine series expansion as given in Eq. (25). For convenience, the current
restraining conditions at x ¼ 0, y ¼ b, x ¼ a and y ¼ 0 will be labeled as A, B, C and D, respectively. Several boundary
conditions representing various combinations of these four restraining conditions and free edge will be considered here.
The first ten frequency parameters, O ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, are presented in Tables 4–6 for plates of different aspect ratios,

r ¼ b=a, when they are subjected to the restraining condition A and free at other three edges. When the strength factor kc is
a very large number, 106, the boundary condition essentially degenerate into the classical case CFFF. The previous solutions
[47] for this particular case are included in Tables 4 and 5 for comparison. Since no result is readily found in the literature
for a moderate kc value, the FEM data is given in Table 6 as a reference solution. In the FEA model, each edge is divided into
Table 3

Frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for several cases, in which S means simply supported, C clamped, E simply supported with rotational springs of

parabolically varying stiffness.

CASE O1 O2 O3 O4 O5 O6 O7 O8

ESSC 23.749 51.862 58.695 86.270 100.485 113.262 133.980 140.960

23.750a 51.868 58.685 86.237 100.498 113.254 133.942 140.915

ESCS 23.794 51.742 58.845 86.285 100.313 113.445 133.918 141.041

23.803a 51.728 58.861 86.256 100.296 113.469 133.868 141.012

ECCS 27.181 60.639 60.926 92.960 114.631 114.868 145.877 146.243

27.192a 60.654 60.931 92.957 114.643 114.890 145.912 146.207

ECSC 29.026 54.903 69.354 94.665 102.408 129.108 140.324 154.820

29.039a 54.932 69.365 94.689 102.447 129.131 140.363 154.858

CEES 23.883 51.907 58.877 86.369 100.506 113.460 134.040 141.091

23.906a 51.921 58.897 86.355 100.523 113.488 134.013 141.070

SECE 23.839 52.027 58.727 86.354 100.678 113.278 134.102 141.010

23.855a 52.061 58.721 86.337 100.725 113.272 134.087 140.974

a Ref. [17].

π= +
π= +

= +
= +

= +
=

=
=

Fig. 2. A rectangular plate with varying elastic edge supports including linear, parabolic, and harmonic functions.

Table 4

Frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for rectangular plates with boundary condition A: kx0ðyÞ ¼ kcð1þ yÞD=a3, Kx0ðyÞ ¼ Kcð1þ yÞD=a, and free on all

other three edges, aspect ratio r ¼ 1.

Kc ¼ kc O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

0 0.00 0.00 0.00 13.47 19.60 24.27 34.80 34.80 61.09 61.09

1 1.00 1.24 3.87 13.92 20.85 25.41 35.07 36.12 61.14 63.57

10 2.47 3.53 7.48 15.38 22.16 29.02 36.09 39.22 61.33 66.04

100 3.29 7.13 15.59 21.59 24.12 35.33 39.68 44.02 62.11 68.92

1000 3.18 8.34 20.54 25.04 29.46 40.13 55.15 57.91 61.53 69.69

106 3.47 8.51 21.29 27.20 30.96 54.19 61.26 64.14 70.98 92.93

3.47a 8.50 21.28 27.20 30.95 54.19

a Ref. [47].
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Table 5

Frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for rectangular plates with boundary condition A: kx0ðyÞ ¼ kcð1þ yÞD=a3, Kx0ðyÞ ¼ Kcð1þ yÞD=a, and free on all

other three edges, aspect ratio r ¼ 2.

Kc ¼ kc O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

0 0.00 0.00 0.00 21.46 26.58 58.48 59.61 88.01 101.5 104.0

1 1.01 1.27 3.87 23.82 26.72 58.99 62.30 88.24 102.6 104.1

10 2.47 3.76 7.50 27.43 28.46 60.62 69.34 89.10 104.8 106.3

100 3.27 9.62 15.77 31.65 35.36 63.61 74.44 90.75 108.1 109.8

1000 3.41 13.99 20.76 44.19 54.65 79.67 91.33 97.80 117.9 124.4

106 3.44 14.81 21.45 48.19 60.18 92.55 93.10 118.5 126.7 152.8

3.44a 14.80 21.43 48.17 60.14 92.51

a Ref. [47].

Table 6

Frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for rectangular plates with boundary condition A kc ¼ Kc ¼ 1, and free on all other three edges.

r ¼ a/b O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

1 1.00 1.24 3.87 13.92 20.85 25.41 35.07 36.12 61.14 63.57

1.01a 1.25 3.89 13.93 20.86 25.42 35.07 36.13 61.14 63.59

1.5 1.00 1.26 3.87 20.33 23.79 47.16 49.96 59.80 67.70 87.43

2 1.01 1.27 3.87 23.82 26.72 58.99 62.30 88.24 102.6 104.1

2.5 1.01 1.29 3.87 23.80 33.09 62.30 71.14 118.9 119.4 140.4

4 1.03 1.44 3.88 23.74 52.21 62.03 108.2 119.8 171.7 197.1

a Finite element method with 100� 100 elements.

Table 7

Frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for rectangular plates with boundary condition A+C with kc ¼ Kc ¼ 1, and free on other edges.

r ¼ a/b O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

1 1.51 1.84 5.48 14.31 21.40 26.61 35.24 37.13 61.19 64.72

1.5 1.51 1.85 5.48 20.54 25.52 47.79 50.01 61.07 68.38 88.57

2 1.52 1.86 5.48 25.54 26.85 59.38 64.19 88.38 103.5 104.2

2.5 1.54 1.89 5.47 25.52 33.17 64.19 71.39 119.6 121.2 140.4

4 1.60 2.07 5.47 25.44 52.26 63.91 108.3 121.8 171.9 199.1

Table 8

Frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for rectangular plates with boundary condition A+C+D with kc ¼ Kc ¼ 1, and free at y ¼ 0.

r ¼ a/b O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

1 1.82 3.80 5.57 14.65 22.92 26.80 36.19 37.30 62.98 65.13

1.5 2.00 5.61 6.27 21.34 25.65 48.12 52.56 62.23 69.19 88.83

2 2.14 5.66 9.43 25.65 28.35 60.03 64.37 91.90 103.8 107.1

2.5 2.27 5.70 13.13 25.63 35.58 64.34 72.50 120.3 121.7 144.5

4 2.59 5.83 25.35 26.97 58.59 64.09 111.5 122.0 173.9 199.3

Table 9

Frequency parameters, O ¼ oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for rectangular plates with boundary condition A+B+C+D with kc ¼ Kc ¼ 1.

r ¼ a/b O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

1 2.17 5.14 5.71 15.00 24.17 27.14 37.17 37.53 64.56 65.48

2.18a 5.09 5.78 14.98 24.17 27.16 37.12 37.50 64.57 65.49

1.5 2.39 5.75 8.78 22.12 25.77 48.46 54.76 63.22 70.21 89.07

2 2.58 5.84 13.24 25.75 29.82 60.68 64.53 94.94 104.3 110.1

2.5 2.76 5.93 18.36 25.73 37.97 64.46 73.60 121.0 122.1 148.0

4 3.23 6.18 25.68 36.85 64.16 64.96 114.7 122.1 175.9 199.6

a Finite element method with 100�100 elements.

X. Zhang, W.L. Li / Journal of Sound and Vibration 326 (2009) 221–234230
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100 elements, which is considered adequately fine to capture the spatial variations of these lower order modes. The current
results match well with those obtained from the FEA model. Usually, the frequency parameters tend to increase with the
aspect ratio, as indicated by the results in Table 6 for the fifth modes and higher. Since the first three modes in each case
Fig. 3. The mode shapes for a plate of aspect ratio r ¼ 2 under the boundary condition: A+B+C+D. The (a) first, (b) second, (c) third, (d) fourth, (e) fifth, (f)

sixth, (g) seventh and (h) eighth mode shape.
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basically represent the rigid-body motions, the corresponding frequency parameters are primarily determined by the
stiffnesses of elastic restraints at edge x ¼ 0, and hence barely affected by the aspect ratio. In comparison, the fourth modes
actually represent two different types of flexible modes: a) the twisting like motion of a free plate for r ¼ 1, 1.5; and b) the
bending-like motion of a free beam for r ¼ 2, 2.5, 4. These explain the particular patterns for frequency parameters for the
fourth modes in Table 6.

Shown in Tables 7–9 are the frequency parameters for a few more complicated cases when two or more edges are
elastically restrained (kc ¼ Kc ¼ 1). It is interesting to note from Table 7 that the first three frequencies are basically
unaffected by the aspect ratio (when rp2.5) for the A+free+C+free configuration. The FEA results are also given in Table 9
for the combination of A+B+C+D. Again, a good comparison is observed between these two different solution techniques.

Thus far, our attention has been focused on the frequency parameters for different boundary conditions and aspect
ratios. As a matter of fact, in the current solution the eigenpairs (eigenfrequencies and eigenvectors) are simultaneously
obtained from the characteristic equation, Eq. (29). For a given eigenfrequency, the corresponding eigenvector actually
contains the expansion coefficients, Amn, cm and dn from which the mode shape can be readily calculated from Eq. (15) in an
analytical form. For example, plotted in Fig. 3 are the first eight mode shapes for a plate of aspect ratio r ¼ 2 under the
boundary condition of A+B+C+D. For conciseness, the FEA mode shapes will not be presented here; it suffices to say that
the modes in Fig. 3 have all been validated by the FEA model.

4. Conclusions

An analytical method has been developed for the vibration analysis of rectangular plates with arbitrary elastic edge
restraints of varying stiffness distributions. The displacement function is generally expressed as a standard two-
dimensional Fourier cosine series supplemented by several one-dimensional Fourier series expansions which are
introduced to ensure the availability and uniform convergence of the series representation for any boundary conditions.
Unlike the existing techniques such as DQ and DSC methods, the current method offers a unified solution to a wide class of
plate problems and does not require any special procedures or schemes in dealing with different boundary conditions. Both
translational and rotational restraints can be generally specified along any edge, and an arbitrary stiffness distribution is
universally described in terms of a set of invariants, cosine functions. While this treatment is very useful and effective for a
continuously distributed restraint, it may not be best suitable for a discretely or partially restrained edge because of the
possible slow convergence or overshoots of the series representation at or near a discontinuity point. This problem,
however, can be easily resolved by substituting the given (discontinuous) stiffness functions into Eq. (21) directly and
carrying out the integrations analytically or numerically. The method was first applied to several ‘‘classical’’ cases which
were previously investigated by using various techniques. It was also used to solve a class of more difficult problems in
which the displacement is no longer completely restrained in the translational direction. The accuracy and reliability of the
current method are repeatedly demonstrated through all these examples as evidenced by a good comparison with the
existing or FEA results. Although the current solution is sought in a weak form from the Rayleigh–Ritz procedure, it is
mathematically equivalent to what would be obtained from the strong formulation because the constructed displacement
function is sufficiently smooth over the entire solution domain. The adoption of a weak formulation may become far more
advantageous when the vibration of a plate structure is attempted. Finally, it should be mentioned that this Fourier series
method is currently being extended to the vibrations of non-rectangular plates including triangular and L-shaped plate.
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Appendix A. Supplemental definitions of symbols used in Eqs. (26)–(28)

Let

xj
aðxÞ ¼ sj

1 sin
px

2a

� �
þ sj

2 cos
px

2a
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þ sj

2 sin
3px
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� �
þ sj

4 cos
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(A.1)

and

xj
b
ðyÞ ¼ tj

1 sin
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2 cos
py

2a

� �
þ tj

2 sin
3py

2a

� �
þ tj

4 cos
3py

2a

� �
. (A.2)

We then define
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m ¼
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p
am, (A.3)
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āj
m ¼

Z a

0
x0jaðxÞ sin lamx dx (A.4)

¯̄al
m ¼

1

Dm

Z a

0
x00ja ðxÞ cos lamx dx ¼

X4

p¼1

sl
pð�l

2
apÞt

p
am, (A.5)

bj
n ¼

Z b

0
xj

b
ðyÞ cos lbny dy ¼

X4

q¼1

tj
qk

q
bn

, (A.6)

b̄j
n ¼

Z b

0
x0jaðyÞ sin lbny dy (A.7)

¯̄b
j

n ¼

Z b

0
x00ja ðyÞ cos lbny dy ¼

X4

q¼1

tj
qð�l

2
bqÞk

q
bn

(A.8)

~aj
m ¼ aj

m=Dm; ~kx0;n ¼ kx0;n=Dn; ~Kx0;n ¼ Kx0;n=Dn, (A.9211)

a0;0
i;j
¼

Z a

0
xiaðxÞxjaðxÞdx; a0;2

i;j
¼

Z a

0
xiaðxÞx

00
jaðxÞdx, (A.12, A.13)

a2;0
i;j
¼

Z a

0
x00iaðxÞxjaðxÞdx; a2;2

i;j
¼

Z a

0
x00iaðxÞx

00
jaðxÞdx (A.14, A.15)

where tp
am denote the expansion coefficients of the following functions

cos
p
2a

x�
p
2

� �
¼
X1
m¼0

t1
am cos lamx; cos

p
2a

x
� �

¼
X1
m¼0

t2
am cos lamx, (A.16, A.17)

cos
3p
2a

x�
p
2

� �
¼
X1
m¼0

t3
am cos lamx; and cos

3p
2a

x

� �
¼
X1
m¼0

t4
am cos lamx. (A.18, A.19)

More explicitly, they are calculated from

t1
am ¼

m ¼ 0
2

p

ma0
4

ð1� 4m2Þp

8>>><
>>>:

; t2
am ¼

m ¼ 0
2

p

ma0
4ð�1Þm

ð1� 4m2Þp

;

8>>><
>>>:

(A.20, A.21)

t3
am ¼

m ¼ 0
2

3p

ma0
12

ð9� 4m2Þp

8>>><
>>>:

; t4
am ¼

m ¼ 0 �
2

3p

ma0
12ð�1Þmþ1

ð9� 4m2Þp

8>>><
>>>:

, (A.22, A.23)

ā1
m ¼

m

p
9

4m2 � 1
�

1

4m2 � 9

� �
; ā2

m ¼ ð�1Þmþ1 m

p
9

4m2 � 1
�

1

4m2 � 9

� �
, (A.24, A.25)

ā3
m ¼

4ma2

p3

1

4m2 � 1
�

1

4m2 � 9

� �
and ā4

m ¼ ð�1Þmþ1 4ma2

p3

1

4m2 � 1
�

1

4m2 � 9

� �
. (A.26, A.27)

The y counterparts, kq
bn

, can be directly obtained from tj
am by replacing m with n, and a with b in the above equations.
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